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A description is given of the n-generated free algebras in the variety of modular 
ortholattices generated by an ortholattice MO2 of height 2 with 4 atoms. In the 
subvariety lattice of orthomodular lattices, the variety V(MO2) is the unique 
cover of the variety of Boolean algebras, in which n-generated free algebras were 
described by G. Boole in 1854. It is shown that the n-generated free algebra in 
the variety V(MO2) is a product of the n -generated free Boolean algebra 2 z" 
and alp(n) copies of the generator MO2, and formula is presented for qb(n). To 
achieve this result, algebraic methods of the theory of orthomodular lattices are 
combined with recently developed methods of natural duality theory for varieties 
of algebras. 

1. O R T H O M O D U L A R  L A T T I C E S  

I .I .  Introduct ion 

In 1936 G. Birkhoff  and J. von Neumann (Birkhoff and von Neumann,  
1936) suggested taking the lattice o f  closed subspaces of  a Hilbert space as 
a suitable model  for ' the logic o f  quantum mechanics. '  This lattice equipped 
with the relation o f  orthogonal  complement  can be described as an ortholattice. 
While in case o f  a finite-dimensional Hilbert space the ortholattice o f  its 
closed subspaces is modular,  in the case of  an infinite-dimensional Hilbert 
space the modular  law is not satisfied. In 1937 K. Husimi (Husimi, 1937) 
showed that a weaker  l a w - - t h e  so-called orthomodular  l aw- - i s  satisfied in 
the ortholattice o f  closed subspaces o f  any Hilbert space. Since then the 
theory of  or thomodular  lattices has been developed; the monographs Kalm- 
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bach (1983) and Beran (1984) are highly recommended for the following 
and other facts about orthomodular lattices. 

An orthomodular lattice is an algebra (L; v, ^,  ', 0, 1) such that: 

(a) (L; v, A) is a lattice; 
(b) the operation ' is order-reversing with respect to the underlying 

lattice order -<, i.e., a = a A b implies b '  = b '  A a ' ;  
(c) 0-----a--< 1 for a l l a  s L; 
(d) the following laws are satisfied: 

( a ' ) '  = a 

a A a' = 0  and a v a' = 1 

( a ^ b ) ' = a ' v b  ' and ( a v b ) ' = a '  A b '  

0 ' = 1 ,  1 ' = 0  

a - < b ~ b  = a v ( b ^ a ' )  

Here (5) is the orthomodular law. It has the equivalent form 

b = ( b A a )  v [ b A ( b ^ a ) ' ]  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Let L be an orthomodular lattice. An important reflexive and symmetric 
binary relation can be defined on L. This is the compatibility relation, referred 
to as 'a  is compatible with b'  and denoted a ,-~ b, which is defined as follows: 

a ~ b if a = (a A b) v (a A b ' )  (a, b ~ L) 

It is can be easily verified (Kalmbach, 1983) that the following rules for ,-. 
hold in any orthomodular lattice: 

where 

a < _ b ~ a o b  (7) 

a < _ b '  ~ a o b  (8) 

a o b ~ a o b  ', a' o b ,  a' o b '  (9) 

a o b ~ c ( a , b )  = 1 (10) 

c(a,  b) = (a ^ b) v (a ^ b ' )  v (a' A b) v (a' A b ' )  

is the commutator of the elements a, b. 
Comparing orthomodular lattices with Boolean algebras, one may say 

that a Boolean algebra is an orthomodular lattice in which every two elements 
are compatible. On the other hand, in an orthomodular lattice there are also 
noncompatible pairs in general. Consequently, one cannot use the distributive 
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law in or thomodular  lattices as in Boolean algebras. However ,  the fol lowing 
version o f  distributivity holds in or thomodular  lattices. Let  M C L be such 
that v M exists in L and let a e L be such that a ,-. m for every  m ~ M. Then 

a ~ v M  and aA(vM)= v ( a A m )  (11) 
m E M  

For a ~ L we let a i denote a if  i = 0 and a '  if  i = 1. The  commuta to r  of  
e lements  xl . . . . .  xn e L is 

c ( x l  . . . . .  Xn) = V X ~  ^ "'" ^ X;" 
( i l  . . . . .  in) ~ 1 0 , 1  }n 

and we write c'(x~ . . . . .  Xn) for (c (x l  . . . . .  xn))'. We have already presented 
the commuta to r  of  two elements  above. The commuta to r  of  three e lements  
x, y, z ~ L i s  

c ( x , y ,  z) = ( X A y  AZ) V (X' A y  A Z) V (X A y '  AZ) V ( X A y  A Z') 

V(X'  ^ y '  A Z )  V ( X '  A y ^ z ' ) V ( X A y '  ^ Z ' ) V ( X '  A y '  ^ Z ' )  

F rom (7) and (8) it fol lows that x i  ~ A "" A X in ~ Xi for every i = 1, 2 . . . . .  
n a n d i l  . . . . .  in ~ {0, l}. Then by ( l l )  w e h a v e  

c ( x l  . . . . .  xn) ~" xi for every i = l, 2 . . . . .  n (12) 

For  every term function t: L n ~ L, the term t(xl . . . . .  xn) can, according to 
(3), be rewritten in a form which uses the operation symbols  v and ' only. 
Therefore  by (9) and (11) we have, for any a, xl . . . . .  xn ~ L, 

a "~ xi ,  i -- l, 2 . . . . .  n =~ a "~ t(xl . . . . .  xn) (13) 

1.2. Variet ies  o f  O r t h o m o d u l a r  Latt ices  

The basic information about the subvariety lattice of  the variety e a t  o f  
or thomodular  lattices can be found in Kalmbach  (1983). 

It is known that there is a three-element (covering) chain 

3- c c  tc2, 

(see Fig. 1) at the bot tom of  the subvariety lattice of  GAt, where  3- and 
are the varieties of  trivial algebras and Boolean algebras,  respectively,  and 
At(~2 = V(MO2) is the variety generated by the or thomodular  lattice M O z  
of  height 2 with 4 a toms a, a ' ,  b, b '  (see Fig. 2). 

In general, MOn (n -> 2) is the or thomodular  lattice of  height 2 with 
p t 2n atoms aj,  a t . . . . .  an, an. Every atom ai generates a maximal  Boolean 
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subalgebra {0, ai, a ' ,  1 } of MO. which is called a block of MO.. Obviously, 
each MOn (n ~ 2) satisfies the modular law 

x<-z~ xv(y ̂ z) = (xvy) Az 
The lattices MO.  (n -> 2) are the only finite subdirectly irreducible modular 
ortholattices and they generate a chain of varieties 

~t~2 ~ ~t~3 ~.- .  c ~t~._, c ~t~, c . . .  ~ ~t~ 

of type o~ + 1, where ~ .  = V(MO~) is the variety generated by MO.  and 

1 
MO2 

a ~ b' 

Fig. 2. 
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JR(~ is the variety of all modular ortholattices. The strict inclusions JR(~, 
./R~,+~ follow from the fact that the identity 

n+l 
A c ' ( x i ,  x j)  = 0 

i , j= 1 
i<j  

holds in AtG., but not in At(~.+1. 
The variety At(~ of modular ortholattices is not generated by the finite 

members, as, for example, the identity 

c ( x ,  c ( y ,  z ) )  = 1 

holds in every M O  n (n ----- 2) ,  but does not hold in the modular ortholattice 
of all subspaces of a three-dimensional Hilbert space over R (Bruns, 1976). 

1.3. Intervals in Orthomodular  Lattices 

Intervals in orthomodular lattices are defined in the usual way, as in 
ordered sets. We shall deal only with intervals of the form [0, v] (v 
L); these can be considered to be orthomodular lattices if one defines the 
orthocomplement of an element a e [0, v] in [0, v] to be a '  A V. 

An element a ~ L is called c e n t r a l  if it is compatible with every x 
L. The set of all central elements of L is said to be the c e n t e r  of L and 
denoted Z(L) .  The center of L is a subalgebra of  L which is a Boolean algebra 
(Kalmbach, 1983). It is easy to prove that 

a ~ Z ( L ) ,  v E L ~ a ^ v ~ Z([0, v]) (14) 

On the other hand, not every element of Z([0, v]) can be written as a ^ v 
for some a E Z ( L ) .  

We conclude this subsection with an important result of MacLaren (1964; 
see also Kalmbach, 1983, p. 20): 

c ~ Z ( L )  r L ~- [0, c] X [0, c'] (15) 

1.4. Free Orthomodular Lattices 

A free orthomodular lattice with one generator F~t(1)  is obviously 
isomorphic to the four-element Boolean algebra {0, x, x ' ,  1}. Thus 
F~a~(l) ~ F~(1) = 2 2 (here 2 denotes the two-element Boolean algebra 2 = 
({0, 1 }; v, A, ', 0, 1)). 

A free orthomodular lattice with two generators Fc~t(2) is a direct product 
of the free Boolean algebra with two generators F~(2) and the lattice 
MO2. Thus 

Fe~t(2) ~ F~(2) X MOz ~ 24 X MO2 ~ F~tc2(2) 
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This free algebra has 96 elements and is described in detail in Beran (1984). 
A free orthomodular lattice with three generators F~t(3) is infinite. Even 

the free modular ortholattice F~t~(3) is infinite, since it has the orthomodular 
lattice of closed subspaces of R 3 as a homomorphic image (Kalmbach, 1983, 
p. 229). 

In this paper we use methods of natural duality theory (Davey and 
Werner, 1983; Clark and Davey, 1998) to describe the structure of the free 
modular ortholattices F~toz(rt ) with n generators (n ~ 3) in the variety ~ z  
that covers the variety of Boolean algebras. The springboard for the work 
was the calculation of F~z(3) by the last author. This was done using 
computer programs developed to determine and optimize natural dualities 
for quasi-varieties generated by small finite algebras (Priestley and Ward, 
1994; Wegener, n.d.). 

2. A NATURAL DUALITY FOR THE VARIETY Ate2 

The theory of natural dualities concerns the topological representation 
of algebras. It grew out of two classical dualities--Pontryagin's duality for 
abelian groups (Pontryagin, 1966) and Stone's duality for Boolean algebras 
(Stone, 1936). 

An important step toward its development was Priestley's duality for 
distributive lattices (Priestley, 1970, 1972). A rapid growth of the theory over 
the last 15 years, which started with a paper of Davey and Werner (1983), 
has recently led to a monograph (Clark and Davey, 1998), which will likely 
be the standard reference on the topic. 

The main idea of the theory is that, given a quasi-variety si = ISP(M_) 
of algebras generated by an algebra M, one can often find a topological 
relational structure M on the underlying set M of M such that a dual equiva- 
lence exists between ~ and a suitable category �9 of topological relational 
structures of the same type as M. Requiring the relational structure of M to 
be 'algebraic over M,' all the requisite category theory 'runs smoothly.' A 
uniform way of representing each algebra A in the quasi-variety ~ as an 
algebra of continuous structure-preserving maps from a suitable structure X 

~ into M is obtained. In particular, the representation is relatively simple 
for free algebras in ~/. 

We shall now recall the basic scheme of the theory more precisely; for 
more detail see Davey and Weruer (1983), Davey (1993), or Clark and Davey 
(1998). Let M = (M; F) be a finite algebra. We write this as M where we 
wish to stress that the set M is carrying the structure of an algebra. Let M 
= (M; G, H, R, 'r) be a discrete topological structure, i.e., the set M endowed 
with (finite) families G, H, and R of operations, partial operations, and 
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relations, respectively, and with a discrete topology -r. We recall that the 
graph of an n-ary (partial) operation g: M "  ~ M is the (n + 1)-ary relation 

gD = {(xl . . . . .  x. ,  g(x))l(xt  . . . . .  x~) E M n} C M "+l 

We say that the structure M is algebraic over  M if the relations in R and 
the graphs of the operations and partial operations in G t_l H are subalgebras 
of appropriate powers of  M. Note that a unary (partial) operation is algebraic 
over M if and only if it is a (partial) endomorphism of  _M_M. 

Let ~ = ISP(M) be the quasi-variety generated by M and assume that 
M = (M; G, H, R, "r) is algebraic over M. Let At = IScP(M) be the 
'topological quasi-variety' generated by M, i.e., the class of  all structures 
which are embeddable as closed substructures into powers of  M. For any 
algebra A ~ s~, let D (A) denote the set of  all ~t-homomorphisms A ~ M. 
Since M is algebraic over M, D (A) can naturally be understood as a substruc- 
ture of'~M A, and so as a member of  ~ .  

Let X C M 1 for some set I and let r C_ M n be an n-ary relation on M. 
We say that a map q~: X ~ M preserves the relation r if [qo(Yl) . . . . .  q~(Yn)] 

r for all xi = ( x i i ) i e l  . . . . .  -~n : (Xni) iEI  such that [Xl i  . . . . .  Xni ] E r for 
every i E /. We say that q~ preserves an n-ary (partial) operation if q~ preserves 
its graph as an (n + l)-ary relation. 

Let X be a structure in ~.  By an ~-morphism qo: X ~ M we mean a 
continuous structure-preserving map, i.e., a continuous map preserving all 
(partial) operations in G LI H and all relations in R. Let E(X)  be the set of  
all ~-morphisms X ~ M. Again, since M is algebraic over M, E(X) can be 
understood as a subalgebra of ___M x, i.e., a member  of  ~ .  

The (hom-)functors D: ~ ~ ~g and E: ~g ~ ~ are contravariant and 
dually adjoint. Moreover, for any A E ~ and for any X E ~ ,  we have maps 
e A" A "-" ED(A) and Cx: X ~ DE(X) given by evaluation, namely 

eA(a)(h)=h(a) for every a ~ A  and h ~ D(A) 

ex(Y)(q~) = q~(Y) for every y e X and qo E E(X)  

which are embeddings. We say in this situation that M yields a pre-duali ty 
o n  S~. 

Let M = (M; G, H, R, "r) be algebraic over M, so that M yields a pre- 
duality on ~ = ISP(M). We say that M yields a (natural) duality on ~1 if 
for every A E S~ the embedding ea is an isomorphism, i.e., the evaluation 
maps ea(a) (a E A) are the only ~-morphisms from D (A) to M. Sometimes 
we say that G tJ H U R yields a (natural) duality on ~1. We further say that 
M (or G U H t_J R) yields a fu l l  duality on ~ if M yields a duality on ~/ 
and for every X ~ �9 the embedding ex is also an isomorphism. In such a 
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case the categories M and ~ are dually equivalent via categorical anti- 
isomorphisms D and E which are inverse to each other. 

Again assume M = (M, G, H, R, "r) is algebraic over M and let r be 
an n-ary algebraic relation on M (i.e., a subalgebra of Mn). We say that the 
structure M (or just G t.) H t_J R) entails r if for every X ~ ~, each ~-  
morphism q~: X ---, M preserves r. The set G t_J H U R entails an n-ary (partial) 
operation h if it entails its graph h D as an (n + 1)-ary relation. Also, G t_J 
H t3 R is said to entail a set K if it entails each k e K. If G t_J H U R yields 
a duality on ~ ,  then the duality is not destroyed by deleting from G t.) H 
t_J R any element which is entailed by the remaining members. This is the 
key to obtaining economical dualities, and thus dualities which are easy to 
work with. For a full discussion of the central role played by entailment in 
duality theory see Davey et al. (1995a, b). Let us mention here just one easy 
fact: if e,s are (partial) endomorphisms of an algebra M, then {e,s} entails 
the composition s o e and the intersection s [] n e D. 

We have not claimed above that it is always possible, for a given algebra 
M, to choose a structure M on M yielding a duality on ISP(M). Indeed, there 
are algebras __M which fa]] to be 'dualizable' (Davey and Werner, 1983, p. 
151; Davey, 1993, p. 107). However, for a very wide range of algebras 
dualities do exist. For example, the NU-Duality Theorem (Davey and Werner, 
1983, Theorem 1.18; Davey, 1993, Theorem 2.8) guarantees that a duality 
on ISP(M___) is available whenever M has a lattice reduct, as is the case for an 
ortholattice. Many further theorems which say how to choose an appropriate 
structure M on M to obtain a duality, or a full duality, on ISP(M) can be 
found in Clark and Davey (1998). One of these, called the Arithmetic-Strong- 
Duality Theorem, will be applied in our investigations. We recall that a 
variety generated by an algebra M_M_ is arithmetical if and only if M__ has an 
arithmeticity (Pixley) term p (x, y, z): M 3 ~ M satisfying 

p ( a , b , b )  = p ( a , b , a )  = p ( b , b , a )  = a  for all a , b  E M 

The following result is an immediate consequence of the Arithmetic-Strong- 
Duality Theorem (Clark and Davey, 1997, Theorem 3.10). 

Theorem 2.1. Assume that a subdirectly irreducible algebra M_ generates 
an arithmetical variety ~ = ISP(M). Let ~ be the set of all unary (partial) 
endomorphisms of M. Then any set H of unary (partial) endomorphisms of 
M that entails ~ yields a duality on ~ .  

One of the basic facts of natural duality theory is that if M yields a 
duality on ~ ,  then each • from M s to M is an S-ary term function 
(see, for example, Davey, 1993, p. 87). Conversely, every S-ary term function 
from M s to M is an x-morphism, provided M is algebraic over M_M. Since, as 
is well known, a free S-generated algebra Fa(S)  in the variety ~ generated 
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by M is isomorphic to the algebra of all term functions from M s to M (with 
projections as free generators), we immediately get: 

Theorem 2.2. Let ~ = ISP(M) be a variety and let M = (M; G, H, R, 
-r) yield a duality on ~ .  The free algebra Fa(S) generated by a set S in the 
variety ~ is isomorphic to the algebra of all x-morphisms from M s to M. 

In particular, if S is finite, with ISI = n, then the n-generated free algebra 
Fa(n) = Fa(S) in the variety generated by M is isomorphic to the algebra 
of all (G U H U R)-preserving functions from M n to M. 

The variety ~ of Boolean algebras is ISP(,~t), where M is the two- 
element Boolean algebra 2 = ({0, 1 }; v, ^, ', 0, 1). The Stone duality (Stone, 
1936) says that M = ({0, 1}; -r) (an empty relational structure) yields a 
duality on ~ .  Hence every Boolean algebra B is isomorphic to the algebra 
of all continuous maps from D(B) to M and the n-generated free Boolean 
algebra Fa(n) is isomorphic to the algebra of all functions from 2 n to 2 
(2 = {0, 1 }), i.e., 

F.~(n) ~-- 2 2" 

We shall focus on the variety ~/~2 "~" V(i~O2) which covers the variety 
in the subvariety lattice of orthomodular lattices. The variety ~ 2  is 

arithmetical since one can define an arithmeticity (Pixley) term on the genera- 
tor MOz, for example, as follows: 

p (x ,y , z )  = ( x v z )  A ( x v y ' ) A ( Z v y ' )  

^ [(c(x, y) ^ Z) v (c(y, Z) ^ x) v (c(x, z) ^ x ^ Z)] 

For verification of this fact note the following: if x, z belong to the same 
block of MO2, then (x v z) A (X' V Z) ---- Z and c (x, z) = l; if x, z are atoms 
of different blocks of MO2, (x v z) ^ (x' v z) = l and c(x, z) = 0. 
Thus, by Theorem 2.1, each subset H of the set ~ of all unary (partial) 
endomorphisms of MO2 such that H entails ~ yields a duality on At(~2. We 
shall show that the required set H of (partial) endomorphisms can be chosen 
such that it consists only of the automorphisms s, t of MO2 (see Fig. 2 again) 
with graphs 

s D = {(0, 0), (a, a), (a', a'), (b, b'), (b', b), (l ,  l)} (16) 

t D = {(0, 0), (a, b), (a', b'), (b, a), (b', a'), (1, l)} (17) 

and one unary partial endomorphism r with the graph 

r D -- {(0, 0), (a, 0), (a', l), (1, 1)} (18) 

Indeed, it is easy to verify that the set ~ t  on MO2 consists only of eight 
automorphisms and five partial endomorphisms and that each of them, except 
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the last one, can be obtained f rom {r, s, t} by composi t ion.  These maps  are 
as follows: 

Automorphisms of  MO2 (presented as products  o f  disjoint cycles): 

(b b')  = s, (a b ')(a '  b) = s o to  s 
(a b)(a' b ' )  = t, (a a')  = t o s o t 
(a b' a'  b) = s o t ,  (a a ' )(b b')  = s o to  s o t 
( a b a ' b ' )  = t o s ,  i d = s o s  

Partial  endomorphisms o f  MO2 (presented by their graphs): 

{(0, 0), (a, 0), 
{(0, 0), (b, 0), 
{ (0, 0), (b, 1), 
{ (0, 0), (a, 1), 
{(o, o), (1, l)} 

(a ' ,  1), (1, 1)} = r n 
(b ' ,  l), (1, 1)} = ( r  o t) n 
(b ' ,  0), (1, 1)} = (r  o t o s) D 
( a ' , 0 ) , ( 1 ,  1)} = ( r o t o s o t )  D 
= s n ("1 t ~ 

Hence  {r, s, t} entails ~ t .  We have proved the fol lowing result. 

Theorem 2.3. H = {r, s, t} yields a duality on AtO 2 = ISP(MO2) .  

From Theorems  2.2 and 2.3 we immediate ly  get: 

Corollary 2.4. The n-generated free algebra F~tc2(n) in the variety Ate2 
is isomorphic to the algebra of  all {r, s, t}-preserving functions f rom (MO2)" 
to M02. 

3. FINITELY GENERATED FREE ALGEBRAS IN At~z 

Let F~to2(n) be the free or thomodular  lattice with n generators in the 
variety At~2 = ISP(MO2) .  As we have already mentioned,  F~tc2(n) is i somor-  
phic to the algebra o f  all n-ary term functions t (x l  . . . . .  xn): (MO2) n --' MO2.  

We claim that a term function t (xl  . . . . .  xn): (MO2) n --' MO2 which 
only takes the values f rom the center Z (MO2)  = {0, 1 } is a central e lement  
of  F~to2(n). Indeed, it suffices to show that, for  any function u (Xl . . . . .  x~) 
E F~tc2(n), 

t(x~ . . . . .  xn) = [t(x~ . . . . .  x~) ^ u(x~ . . . . .  Xn)] 

v [ t ( x l  . . . . .  x . )  ^ u ' ( x l  . . . . .  x~)] 

Since t (xl  . . . . .  Xn) ~ {0, 1}, equality trivially holds. 
It is easy to see that the commuta tor  function c(x t  . . . . .  x~): ( M 0 2 )  n 

M 0 2  takes only the values 0 and 1. Moreover,  one can easily verify that 

c'(xl  . . . . .  xn) = 1 if and only if at least two of  xl . . . . .  xn are 

atoms of  different blocks in MO2 (19) 
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We have shown that the commutator function c(x~ . . . . .  xn) is a central 
element of F~tc2(n). Thus, by (15), 

F~tc2(n) -- [0, c(xt  . . . . .  x,)] X [0, Ct(Xl . . . . .  Xn) ] 

It is well known (Kalmbach, 1983, p. 231) that [0, C(Xl . . . . .  x,)] is a Boolean 
algebra, the free Boolean algebra with n generators. Hence the problem of 
describing the structure of F~tcz(n) reduces to the problem of describing the 
structure of the interval 

[0, c ' (x~  . . . . .  x.)] 

For n -- I, c'(xl)  = 0. Thus, we shall concentrate on n -> 2. 

The Case n = 2. The interval [0, c'(x, y)] in the free algebra F~to2(2 ) 
with two generators consists of elements of the form t(x, y) ^ c'(x, y), where 
t(x, y) E F~to2(2). Using (3), we can rewrite the term t(x, y) in a form l(x, 
y, x', y'), where l(Zl . . . . .  z4) is a lattice term in which x, y, x', y'  are 
substituted for zl . . . . .  z4. Since by (9), (12), and (13), c'(x, y) is compatible 
with every element of the free algebra F~tc2(2), using (11) we get 

t(x, y) A C'(X, y) = l(x, y, X', y ' )  A C'(X, y) 

= l ( X A C ' ( X , y ) , y ^ c ' ( x , y ) , x '  ^ C ' ( X , y ) , y '  AC ' (X ,y ) )  

Thus, the interval [0, c'(x, y)] in F~to2(2) is generated by 

X A C'(X, y), y A c'(x, y), X' A C'(X, y), and y'  A C'(X, y) 

It is easy to compute that these four term functions generate the orthomodu- 
lar lattice 

{0, x ^ c'(x, y), x'  ^ c'(x, y), y A C'(X, y), y'  ^ C'(X, y), C'(X, y)} 

isomorphic to MO2 (Fig. 3). Hence 

F~te2(2) ~ [0, c(x,  y)] • [0, c'(x, y)] ~ F~(2) X MO2 

which is a known result from Kalmbach (1983, p. 239) and Beran (1984, 
Section III.2). 

The Case n = 3. According to (15), we can decompose the interval [0, 
c'(x, y, z)] of F~tc2(3) by the central elements c(x, y), c(x, z), and c(y ,  z). 
We get 

[0, c'(x, y, z)] ~ [0, C~(x, y, z)] X [0, C2(x , y, z)] • "'" • [0, Cs(x, y, z)] 
(20) 
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z^c'(~,~) 
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c'(z,y) 

~'^c'(~,y) 

Fig. 3. 

where 

Cl(x, 

C2(x, 

C3(x, 

C4(x, 

Cs(x, 

C6(x, 

CT(x, 

C8(x, 

y, Z) = c(x,  y) ^ c(x,  Z) A c(y ,  Z) A C'(X, y, Z) 

y, Z) = C(X, y) A C(X, Z) ^ c '(y,  Z) ^ C'(X, y, Z) 

y, Z) = C(X, y) ^ C'(X, Z) A c(y ,  Z) A C'(X, y, Z) 

y, Z) = C'(X, y) ^ C(X, Z) ^ c (y ,  Z) ^ C'(X, y, Z) 

y, Z) = C(X, y) ^ C'(X, Z) ^ c '(y,  Z) A C'(X, y, Z) 

y, Z) = C'(X, y) A C(X, Z) ^ c '(y,  Z) ^ C'(X, y, Z) 

y, Z) ----- C'(X, y) ^ C'(X, Z) ^ c (y ,  Z) ^ C'(X, y, Z) 

y, Z) = C'(X, y) ^ C'(X, Z) ^ c '(y,  Z) ^ C'(X, y, Z) 

It is easy to see that the functions CL (x, y, z), C8(x, y, z): (MO2) 3 ~ M02 are 
identically equal to 0; thus we can cancel the intervals [0, Cl(X, y, z)] and 
[0, C8(x, y, z)] in (20). Further, by symmetry, the following sets of intervals 
have the same structure: 

[0, C2(x, y, z)], [0, C3(x, y, z)], and [0, C4(x, y, z)] 

[0, Cs(x, y, z)], [0, C6(x, y, z)], and [0, CT(X, y, z)] 

Now let us take the interval [0, C2(x, y, z)] and consider the function 

X A C2(x, y, Z): (MO2) 3 --> M02 
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Note that C2(x, y, z) ~ {0, 1}. Further, c ' (y ,  z) = 1 only if y, z are a toms of  
different blocks in MO2;  if this holds, then c (x, y) ^ c (x, z) = 1 only if 
x ~ Z(MO2)  = {0, 1 }. Hence  the function x A C2(x, y, Z) takes only the 
values 0 and 1, and thus it is a central e lement  o f  Fate2(3). By  (14) it is also 
a central e lement  of  the interval [0, C2(x, y, z)], which therefore can, according 
to (15), be decomposed  as 

[0, C2(x, y, z)] ~ [0, x ^ Cz(x,  y, z)] x [0, x '  A C2(X, y, Z)] 

We have 

and 

X A C 2 ( x , y , z )  = 1 iff 

x = 1 and y, z are a toms o f  different blocks in MO2 (21) 

(1, a, b) = (Xo, Yo, Zo) 

(1, a, b ' )  = (S(Xo), s ( yo ) ,  S(Zo)) 

(1, b, a)  = ( t(xo),  t ( yo) ,  t(Zo)) 

(1, b ' ,  a) = ((s o t)(Xo), (s o t)(yo),  (s o t)(Zo)) 

(1, b, a ' )  = ((t o s)(xo), (t o s)(yo) ,  (t o s)(zo)) 

(1, b' ,  a ' )  = ((s o t o s)(xo), (s o t o s)(yo), (s o t o s)(zo)) 

(1, a' ,  b) = ((t o s o t)(Xo), (t o s o t)(yo),  (t o s o t)(Zo)) 

( t ,  a ' ,  b ' )  = ((s o t o s o t)(Xo), (s o t o s o t)(yo), (s o t o s o t)(Zo)) 

x '  A C2(x, y, Z) = 1 iff 

x = 0 and y, z are a toms of  different blocks in M 0 2  (22) 

We shall show that the interval [0, x A C2(x, y, Z)] is isomorphic to M 0 2 .  It 
follows from Corol lary 2.4 that this interval consists o f  all { r, s, t}-preserving 
functions f ( x ,  y, z): (M02)  3 -~ M 0 2  such that 

f ( x ,  y, z) ~ x A C2(x, y, Z) for  all x ,  y, z E M O  2 

Obviously,  taking account  of  (21), it suffices to consider only triples (x, y, 
z) E (M02) 3 where the function x A C2(x, y, Z) takes a nonzero value, i.e., 
takes the value 1. So let 

T : =  { (x, y, Z) E (MO2)31X A C2(x, y, z) = 1} 

Certainly T is invariant under the action o f  the au tomorphism group 

Aut(MO2) = {id, s , t ,  s o t ,  t o s ,  s o t o s ,  t o s o t ,  s o t o s o t }  

There are eight e lements  in T, and these can be expressed as 
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(That is, the automorphism group acts transitively on T.) 
Let  f(x,  y, z): (MO2) 3 --* M02 be any {r, s, t}-preserving function such 

that we have f (x ,  y, z) <- x ^ C2(x, y, z). Let f(xo, Yo, Zo) = c ~ M02. Then, 
necessarily, f preserves all composit ions formed from s and t, so 

f(a(Xo), et(yo), ot(Zo)) = ctf(xo, Yo, Zo) = ct(c) for all e~ E Aut(MO2) 
(23) 

Hence f can take any of  the six values c ~ MO2 on the triple (x0, Yo, Zo) and 
its values on the remaining seven triples in T are then prescribed by (23). 
Note that the restricion f F T of  f to T is r-preserving vacuously because 
(r(x) ,r (y) ,r (z) )  ~t T f o r  any (x, y, z) ~ T. Thus there are six {r, s, t}-preserving 
functions f (x ,  y, z) in the interval [0, x ^ C2(x, y, z)] and this interval is 
isomorphic to MO2. 

In the same way, the interval [0, x' ^ C2(x, y, z)] --- MO2. Hence 

[0, C2(x, y, z)] ~ (MOz) 2 

Analogously, 

[0, C3(x, y, z)] -~ (MO2) 2 and [0, C4(x , y, z)] ~ (MO2) 2 

Now take the interval [0, Cs(x, y, z)] in F~t~z(3). Consider the function 

v(x,  y, z) = ((x' A y) V (X A y ' ) )  A Cs(x, y, Z): (MO2) 3 ~ M02 

Since c'(x, z) ^ c'(y,  z) belongs to {0, 1 } and takes the value 1 if and only 
if x, y are atoms of  one block of  MO2 and z is an atom of  the other block, 
the function v (x, y, z) takes only the values 0 and 1. Hence it is a central 
element of  the interval [0, Cs(x, y, z)], which can therefore be decomposed as 

[0, Cs(x, y, z)] ~ [0, ((x' A y) V (X A y'))  A Cs(x, y, Z)] 

• [0, ((x' A y ')  V (X ^ y)) ^ Cs(x, y, Z)] 

We have 

((x' A y) V (X A y'))  A Cs(x, y, Z) = 1 i f fx ,  y are different 

atoms of  one block in MOz and z is an atom of  the other block (24) 

((x' ^ y')  v (x ^ y)) ^ Cs(x, y, z) = 1 i f f x  = y is an atom of  

one block in MO2 and z is an atom of  the other block 

By (24) the set 

T l :=  { ( x , y , z )  E (MO2)31v(x, y, z) = 1} 

(25) 



Finitely Generated Free Modular Ortholattices. I 2653 

consists of the following eight triples [the automorphism group Aut(MO2) 
acts transitively on T']: 

(a, a ' ,  b) = (Xo, Yo, Zo), (s(x0), s ( y o ) ,  S(Zo)), 

(t(Xo), t (yo) ,  t(Zo)) . . . . .  

((s o t o s o t)(Xo), (s  o t o s o t ) (yo) ,  (s o t o s o t)(Zo)) 

Take f ( x ,  y, z): (MO2) 3 ~ M 0 2  to be any {r, s, t}-preserving function such 
that f ( x ,  y, z) <-- v (x, y, z). Note again that f ~ T' is r-preserving vacuously. 
Iff(xo, Yo, Zo) = c e MO2, then (23) holds for the remaining seven triples. 
Since c can be any element of M 0 2 ,  

Similarly, 

whence 

[0, v (x, y, z)] ~ MO2 

[0, ((x '  ^ y ' )  v (x  ^ y ) )  ^ Cs(x,  y, z)] ~ MO2 

[0, Cs(x,  y, z)] --~ (MO2) 2 

Hence also 

[0, C6(x, y, z)] ~ (MO2) 2 and [0, CT(X, y, z)] ~ (MO2) 2 

Thus, by (20), 

Consequently, 

and 

[0, c ' (x ,  y, z)] ~ (MO2) ~2 

F~t~2(3) ~ F~(3) X (MO2) 12 

IF~tv2(3)l = 28 . 612 

The G e n e r a l  Case.  For n (n --- 2) generators, we decompose the interval 
[0, c ' (x j  . . . . .  xn)] by the central elements c(x i ,  xj),  i, j = 1 . . . . .  n, i < j .  
We obtain that 

[0, c ' ( x l  . . . . .  x . ) ]  -'- lq t0,/  
~,~ {0,1 }N i,j=l 

i<j 

cWi'J(xi, Xj) A C' (X I . . . . .  Xn) ] 

where the product is taken over all N-tuples 

= (W1, 2 . . . . .  Wl,n, W2, 3 . . . . .  Wn_l,n) e {0, 1} N 
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where N = (~) and 

C (Xi, Xj), 
cWi'J(xi, Xj) = t C, (Xi ' Xj), 

Every term function 

t.(xl . . . . .  x . )  = 

if wi, j -~- 0 

if  Wi, j = 1 

A 
i,j= 1 
i<j 

cWi'J(xi, Xj) A C'(X 1 . . . . .  Xn) 

obviously corresponds to the following undirected graph without multiple 
edges and loops G~-: the vertex set of G,% is {xl . . . . .  xn} and x~ 9 is an edge 
of G~ if and only if wi j  = 1; for example, for n = 5 and qr = (0, 1, 1, 0, 
1, 1, 0, 0, 0, 0), the term function 

tv(x l  . . . . .  xs) = C(XI, X2) A C'(Xl, X3) A C'(XI, X4) A C(XI, X5) A C'(X2, X3) 

^ c ' (x2,  x4) A C(X2, Xs) ^ c(X3, x4) 

A C(X3, Xs) k C(X4, XS) A C'(X 1 . . . . .  X5) 

corresponds to the graph G~ in Fig. 4. The term function tT~(x~ . . . . .  xn) 
corresponding to a graph G = G~- will be denoted by Ca(xl  . . . . .  xn). 

As we have seen in the case n = 3, some of the term functions 

CG(X 1 . . . . .  Xn): (MO2)" --> MO2 

can be identically equal to 0. We shall now characterize those graphs G for 
which the associated functions Ca(xl  . . . . .  xn) are nonzero. 

Propos i t ion  3.1. Let C~(xl  . . . . .  x.): (MO2) ~ ~ MO2 be a term function 

c w~,j(x~, x~) ^ c ' ( x l  . . . . .  x~) 
i,j= l 
i<j 

271 A A X3 

x5  

x2 x4  

Fig. 4. 
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with an associated graph G = G ~. The following conditions are equivalent: 

(a) Ca (xl . . . . .  x , )  is not identically equal to zero; 
(b) there exist elements al . . . . .  an E M 0 2 ,  not all from Z(MO:)  = 

{0,1 }, with the following properties: 
(i) Co(a1 . . . . .  an) = 1; 
(ii) xixj is an edge of G if and only if a;, aj are atoms of different 
blocks in MO2; 

(c) G consists of k isolated vertices (0 -< k < n) and one connected 
component which is a complete bipartite graph. 

Moreover, provided the equivalent conditions (a)-(c) hold, there are exactly 
2 "+1 n-tuples (al . . . . .  an) ~ (MO2)" with the properties in (b). 

Proof .  (a) ~ (b). Assume that 

C~(x~ . . . . .  x . )  = ~ c w'J(xi, xj) ^ c'(x~ . . . . .  x . )  
i,j=l 
i<j 

is not identically equal to 0. This means that there exist a~ . . . . .  a .  ~ M O  2 

such that C~(al  . . . . .  a . )  --/: O, i.e., Cr . . . . .  a.) = 1, because all 
c Wi,J(xi, xj) and c 'x l  . . . . .  xn) take only values 0 and 1 on M 0 2 .  Hence (i) 
holds. It is easy to see that not all of  a~ . . . . .  an belong to Z(MOz), for 
otherwise c ' (a l  . . . . .  a.) = 0 by (19), and thus Ca(al  . . . . .  an) = O, a 
contradiction. 

From (i) it follows that c wiJ(ai, aj) = 1 for all 1 <- i < j --< n, Now if 
xixj  is an edge of G, then wi,j = 1, and thus c'(ai ,  aj) = 1 yields that ai, aj 
are atoms of different blocks in MO2 by (19). Conversely, if ai, aj are atoms 
of different blocks in MO2, then c'(ai ,  aj) = 1 by (19), hence w~, i = 1 and 
xixj  is an edge of G. We have proved (ii). 

(b) ~ (c). Let us take (al . . . . .  a . )  ~ ( M 0 2 ) "  as in (b). Without loss of 
generality we may assume that a~ . . . . .  ak E {0,1} C_ M 0 2 ,  ak+l . . . . .  am 
are atoms of one block of MO2 and am+~ . . . . .  a .  are atoms of the other 
block of MO2 (0 < k < m < n). By (b)(ii) we conclude that in G each of 
the vertices xl . . . . .  Xk is isolated, each of the vertices Xk+~ . . . . .  Xm is connected 
with each of the vertices x,.+~ . . . . .  x., and no two vertices inside the sets 
{Xk+t . . . . .  X.,}, {X.,+l . . . . .  X.} are connected. Hence G consists of k isolated 
vertices x~ . . . . .  xk (0 <- k < n) and one connected component {xk+~ . . . . .  
x.} which is a complete bipartite graph with partition {Xk+~ . . . . .  Xa},  {Xm+~, 

. . . .  Xn}- 
(C) ~ (a). Let (c) hold and assume without loss of  generality that 

xt  . . . . .  Xk (0 <-- k < n) are isolated vertices of G, and let the partition {Xk+l, 
. . . .  Xm}, {Xm+~ . . . . .  X.} induce a complete bipartite graph (k < m < n). 
Let a~ . . . . .  a.  be elements of M 0 2  such that a~ . . . . .  ak E {0,1 }, ak+~ . . . . .  
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am are atoms of  one block of  MO2 and a,~+l . . . . .  a .  are atoms of  the other 
block of  MO2. For every i, j ~ { 1 . . . . .  n } i < j ,  we have the following. I f  
xixi is an edge of  G, then wij  = 1 and a~, aj are atoms of  different blocks of  
MOz  and thus c Wl,J(xi, xj) = c'(xi, xj) in Cc(xl  . . . . .  Xn) and c'(ai, aj) = 1. 

On the other hand, if xixj is not an edge in G, then w i j  = 0 and ai, aj are 
not atoms of  different blocks of  MO2 and thus cWiJ(xi, xj) = c (xi, xj) in Ca(xl ,  

. . . .  x.)  and c (a i, aj) = 1. Consequently,  C c ( a l , . . . ,  a. )  = 1, which proves (a). 
From above it fol lows that if G = G n has k isolated vertices x~ . . . . .  

xk (0 -< k < n) and one connected componen t  with the partition {xk§ . . . . .  
Xm}, {x,.+l . . . . .  x.} (k < m < n), then Ca(al  . . . . .  an) = 1 on those n-tuples 
(al . . . .  , an) ~ (M02)  n for which al . . . . .  ak ~ Z(MO2)  -- {0, 1 }, ak+l . . . . .  
am are atoms of  one block of  MO2, and am+t . . . . .  a ,  are atoms of  the other 
block of  MO2. Each of  a~ . . . . .  a ,  can be either 0 or 1, i.e., there are 2 k 
possibilities of  choosing a~ . . . . .  ak in MO2. Since MO2 has 2 blocks,  there 
are 2 possibilities o f  choosing the b lock f rom which ak+i, �9 �9 am are taken 
(then a,,+~ . . . . .  an are taken f rom the other b lock  of  MO2). Once it is decided 
from which block of  MO2 each ai (k < i <- n) is taken as an atom, there 
are 2 possibilities in choosing each of  these ai (because both blocks have 2 
atoms). Hence there are 2k-2.2 "-k = 2 "+1 possibili t ies in choosing the e lements  
al . . . . .  a ,  f rom m 0 2  such that (i) and (ii) o f  (b) hold. �9 

Let  us recall that by Corollary 2.4 the n-generated free algebra F~tc~z(n ) 
is isomorphic to the algebra of  all {r, s, t}-preserving functions f rom (MOz)" 

to M 0 2 ,  where r, s, t are (partial) endomorph i sms  of  MO2 with graphs r =, 
s D, t ~ given by (16)-(18).  Further, a function f :  (MO2) n ~ m o 2  is r-preserving 
if and only if, for ai, bi E M O  2 (1 ~ i < n), 

(al,  bl) ~ r ~ . . . . .  (an, bn) ~ r ~ (26) 

implies 

( f ( a l  . . . .  , a , ) , f ( b l  . . . . .  b , ) )  ~ r D 

We shall show that, for any graph G satisfying (c) o f  Proposit ion 3.1, among  
the 2 "+l n-tuples of  (MOz)" satisfying (b) o f  Proposi t ion 3.1, there are no two 
n-tuples (al . . . . .  a . ) ,  (ba . . . . .  b . )  ~ (M02)"  for which (26) holds. Suppose 
that such two n-tuples (al . . . . .  an), (bl . . . . .  bn) exist. According to (b)(ii) 
of  Proposit ion 3.1, a i is a central e lement  of  M O z  if  and only if x; is an 
isolated vertex of  G, which is so if and only if  bi is a central e lement  of  
MO2 (1 <-- i --< n). Since r ~ = {(0, 0), (a, 0), ( a ' ,  0), (1, 1 )} C_ (MO2) 2, 
(26) automatical ly yields that for  every i = 1 . . . . .  n either ai = bi 

Z(MOz)  = {0, 1 } or ai is an a tom and bi ~ {0, 1 }. S ince  bi is central if  and 
only if ai is central, the latter is imposs ib le .  Hence  ai = bi ~ Z(MO2)  for 
all i = 1 . . . . .  n, whence xl . . . . .  xn are isolated vertices of  G according to 
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(b)(ii) of  Proposi t ion 3.1, but this contradicts the fact that G has k < n 
isolated vertices. 

We have character ized those graphs G which correspond to the nontrivial  
intervals [0, CG(Xl . . . . .  X.)] of  F~te2(n) and we have shown that each nonzero 
term function Co(xl . . . . .  x,,) takes on (M02)" only values 0 and 1, the latter 
on 2 "§ n-tuples f rom (MO2)" among which no two n-tuples satisfy (26). N o w  
we are ready to describe the structure of  the intervals [O,Co(Xl . . . . .  x.)] in 
F~tez(n). 

Let  [0, Co(x1 . . . . .  x.)] be a nontrivial interval in FMo2(n). This interval 
consists o f  all {r, s, t}-preserving functions f :  (M02)  n -* M 0 2  such that 

f ( a l  . . . . .  a.)  <-- C~(al . . . . .  a .)  (27) 

for all (al . . . . .  an) ~. ( M 0 2 ) " .  Let To be the 2"+~-element set consisting of  
the n-tuples ( a l  . . . . .  an) ~ (M02)" for which Co(al . . . . .  a .)  --/: O, i.e., 
Co(a~ . . . . .  a . )  = 1. It obviously suffices to take account  of  (27) only for  
those n-tuples (al . . . . .  a . )  which belong to 7"6. Since no two elements  (al ,  
. . . .  a.),  (bl . . . . .  bn) of  To satisfy (26), every considered function f :  To 
M 0 2  is automatical ly  r-preserving. Since the automorphisms s, t generate  
Aut(MO2),  a function f :  To ~ M 0 2  is {s, t}-preserving if and only if it is 
Aut(MO2)-preserving,  i.e., for any automorphism ca ~ Aut(MO2) and (al,  
. . . .  an),  ( b  I . . . . .  bn) ~ T G, 

(al ,  bl) E a D . . . . .  (a.,  b.)  E ca[] (28) 

implies 

( f ( a l  . . . . .  an) , f (b t  . . . . .  b.))  ~ caa 

or, al ternatively expressed,  

f ( a ( a l )  . . . . .  ca(a.)) = a f (a l  . . . . .  a.)  = f ( b l  . . . . .  b,,) (29) 

Let  us define a binary relation E on To as follows: ((a~ . . . . .  an), (b~ . . . . .  
b.))  u E if there is an ca E Aut(MO2) such that (28) holds. It is an easy  
exercise to show that E is an equivalence on TG. Each equivalence class [(al,  
. . . .  a.)]e is obviously  the 8-element set 

[(al, . .  , ,  a . ) l e  = {(ca(a0 . . . .  , ca(an))lca ~ Aut(MO2)} 

Let  f ( x l  . . . . .  x . )  be an element  of  the interval [0, Ca(xl . . . . .  x.)] in 
F~te2(n), and thus f ( x l  . . . . .  x.): (MO2)" ~ M 0 2  is an Aut(MO2)-preserv ing  
function such that (27) holds for  all (al . . . . .  a . )  ~ T o. Choose  any (al . . . . .  
a.)  ~ To and assume t h a t f ( a l  . . . . .  a.)  = c ~ M02.  

Since (28) holds exact ly for the n-tuples (bl . . . .  , b.)  E [(al . . . . .  an)]e, 
by (29) we get that [similarly to (23) in the case n = 3] 

f(ca(al)  . . . . .  ca(a.)) = caf(al . . . . .  a . )  = ca(c) (30) 
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for all eight maps ~ ~ Aut(MO2). This means that fF[(at . . . . .  an)]e can 
take any of the six values c ~ M02 on the n-tuple (at . . . . .  a.) and its values 
on the remaining seven n-tuples from [(al . . . . .  an)]E are given by (30). 
Consequently, for given (al . . . . .  a.) E 7"6, 

{fl[(al . . . . .  a.)]elf:  Tc --> M02 preserves Aut(MO2)} ~ MO2 

Since it is clear that 7"6 has 2"+1/8 = 2 " - 2  equivalence classes [(at . . . . .  a.)]e 
[where (al . . . . .  an) ~ TG], the structure of the interval [0, Ca(xt . . . . .  x.)] 
in F.cg(n) can be described by 

[0, Cr(xl . . . . .  x.)] ~ {f~Trl f :  Tc --+ M02 preserves Aut(MO2)} 

( M 0 2 )  2n-2 (31) 

Hence we have shown the following result. 

Theorem 3.2. For every graph G satisfying (c) in Proposition 3.1, the 
corresponding nontrivial interval [0, Cr(Xl . . . . .  x.)] in F~,rce2(n) is isomorphic 
to (MO2) 2"-2. 

To get a complete description of  the free algebra F~m2(n), it now suffices 
to count the number of the graphs satisfying (c) of Proposition 3.1. Every 
such graph G = G~, has k isolated vertices (0 <-- k < n). It cannot have 
n - 1 isolated vertices, as this would yield that also the remaining vertex is 
isolated. Hence 0 --- k -< n - 2. One can choose k isolated vertices by 
(D choices. The remaining (n - k) vertices can form a complete bipartite 
graph by 

n - k  2((nl 2 - -1)) 
possibilities [here (("7 k) + (n"4k_,.))/2 means that the bipartite graph, which 
has n - k vertices divided into two vertex sets, has i vertices in one vertex 
set and n - k - i in the other]. 

Hence the number of graphs G = G ~ associated to the nontrivial inter- 
vals [0, C6(xl . . . . .  x.)l of F.~2(n) is 

* ' ( n )  = ~ " 2  1 + + "'" + k=0 2 n - k -  1 

. ( l +  - 2  
k=0 2 

-:/:) 3 = 1 .  " 2 " - * -  s "2  
2 I_k=0 k=o 
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Since 

and 

1 
= : "  [(1 + 2 ) " -  2 n -  

z 

1 
= : ' [ 3 " - 2  "+t + 11 

z 

1 - 2 . ( 2 " - n -  1)] 

F~toz(n) ~ F~(n)  • [0, c ' (x l  . . . . .  x,)] 

[0, c ' ( x l  . . . . .  x.)] ~ 1--[ [0, C d x l  . . . . .  x.)l 
G 

where each [0, Co(x1 . . . . .  x.)] --  (MO2) z"-2, we get that [0, c ' (x t  . . . . .  x.)] 
is isomorphic to the product  o f  ~ ( n )  copies o f  the generator MO2 where the 
formula q~(n) is given by 

1 
�9 (n) = ~ �9 (3" - 2 "+1 + 1) �9 2 "-2 = 2 "-3 �9 (3" - 2 "+J + 1) 

Hence we get the final results: 

Theorem 3.3. For  any n > 1, 

F~oz(n) ~ F~(n)  • (MO2) ~m 

where 

�9 (n)  = 2 n-3 �9 (3" -- 2 "+1 + 1) 

Corollary 3.4. For  any n > 1, 

IF~t~(n)l = 2 2~" 6 2"-3"(y~-2n+l+l) 
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